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In collaborative spacecraft projects between NASA and ESA, cross-agency exchanges of thermal 

models are necessary to facilitate thermal design as well as generate temperature and heat 

predictions at the observatory level. The standard thermal software used within NASA for the 

Geometric Math Model (GMM) is typically the Thermal Synthesizer System (TSS) or Thermal 

Desktop, while SINDA/G or SINDA/FLUINT is used for the Thermal Math Model (TMM). 

However, the standard for the majority of ESA projects remains ESARAD for the GMM and 

ESATAN for the TMM. Although ESATAN was developed from a SINDA-like framework, 

several crucial differences in thermal model structure and GMM features make any effort to 

translate between the two model formats a painstaking task. A recent effort has been initiated by 

the NASA Goddard Thermal Engineering Branch to develop a standardized converter between the 

TSS with SINDA/FLUINT and ESATAN/ESARAD formats. Developed in the VB.NET 

language, this converter tool provides a Graphical User Interface (GUI) to facilitate the conversion 

process among end users, and employs a framework of two top-level classes for importing, 

manipulating, and exporting data from GMMs and TMMs. The GMM class stores information 

regarding input and output files, units, emulation for unsupported surface types, and data 

structures for Entities, Variables, Optical Properties, and Thermophysical Properties. For surfaces 

that require emulation, the GMM converter also seeks to devolve more complex geometries into 

base primitive shapes such that they can be passed between programs. The TMM class stores 

information regarding nodes, conductors, arrays, and registers, and converts all data types 

supported by both programs. A preliminary effort has also been made to translate model logic 

between SINDA/FLUINT and ESATAN. It is hoped that development of this conversion tool will 

facilitate inter-agency collaborations for NASA and its ESA partners on current and future 

projects. 

 

I. Introduction 
 
Proposals were submitted to NESC to develop an agency supported utility to address conversion between common 

ESA and NASA formats for thermal models. Typically, spacecraft thermal modeling consists of two separate but 

related models: the first is a Geometrical Math Model (GMM), which consists of a collection of surfaces that 

represent the radiating surfaces of a spacecraft. In addition to their spatial location and size definitions, these 

surfaces are often further assigned thermo-optical properties, active sides, and node numbers for representation in 

the Thermal Math Model. The GMM is used to compute View Factors or Interchange Factors for the exchange of 

radiative energy between surfaces as well as absorbed environmental heating from planetary or solar sources. These 

couplings and loads are combined with additional electrical heating sources, mass and capacitance effects, and 

additional linear and radiative couplings to form the Thermal Math Model (TMM). The Thermal Math Model is 

typically analogous to an electrical network with resistors, sources and capacitances, but where temperatures are 

solved instead of voltage.  
 
While the formats of the various tools used for GMM and TMMs is different, the underlying approach is quite 

similar. Therefore, a commonality exists between the tools to allow for conversion between formats, but special 

attention must be given to the differences. The GMM conversion tends to be more straightforward due to structural 

limitations in the capabilities of the codes (i.e. surfaces may only be generated within the confines of what the code 

allows). The TMM conversion is typically more difficult due to the unstructured nature of the logic blocks and the 

extensibility allowed by the underlying FORTRAN programming language. The proposal was to develop a 

framework to allow for GMM and TMMs to be imported, manipulated, and exported from a neutral format, initially 

focusing on GMMs in the ESARAD and TSS formats and TMMs in the SINDA/FLUINT and ESATAN formats. 

Reader and writer methods were developed along with additional methods for the emulation of features not 

supported by both codes. The neutral format may also be acted upon to further query the model contents and 
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evaluate or modify them programmatically. The capabilities and limitations of the framework are further described 

herein. 
 
II. Geometrical Math Model: Framework 
 
The GMM Converter framework includes the necessary properties to specify the input and output file names, 

formats and units. It also includes collections of Surfaces, Optical Properties, Thermophysical Properties, Points, 

and Variables. These collections are populated by dedicated reader methods for the supported thermal analysis codes 

(currently TSS and ESARAD). Further methods are provided for the emulation of surface types that do not exist in 

both codes and the representation of subdivided surfaces by assemblies of single node surfaces to account for 

differences in node numbering order and surface subdivision capabilities of the supported codes. Table 1 shows the 

list of supported surface types. 

 

Entity Type TSS ESARAD Subdividable? Emulated? Emulation 

Assembly Y Y N/A N/A  

Rectangle Y Y Y Y Rectangles 

Triangle Y Y N N/A  

Trapezoid Y Y Y Y Triangles+Quadrilaterals 

Disc Y Y Y Y Discs 

Cylinder Y Y Y Y Cylinders 

Sphere Y Y Y Y Spheres 

Cone Y Y Y Y Cones 

Paraboloid Y Y Y Y Paraboloids 

Polygon Y N N Y Triangles 

Box5Sides Y N N Y Rectangles 

Box6Sides* Y N N Y Rectangles 

Torus Y N Y Y Cones 

Brick** Y N Y Y Rectangles 

SolidCylinder** Y N Y Y Disc+Rect+Cyl 

SolidSphere** Y N Y Y Sphere+Disc 

Tetrahedron** Y N N Y Triangles 

SolidWedge** Y N N Y Triangles+Rectangles 

NonUniformBrick** Y N N Y Quadrilateral 

Ellipse Y N Y Y Triangles or Quadrilaterals 

Ellipsoid Y N Y N  

Ogive Y N Y N  

Hyperboloid Y N Y N  

Elliptic_Cone Y N Y N  

Box* N Y Y Y Rectangles 

Triangle (subdividable) N Y Y Y Triangles+Quadrilaterals 

Quadrilateral (subdividable) N Y Y Y Quadrilaterals 

Triangular Prism N Y Y N  

Half Space N Y N/A N  

* Box type entities have different numbering methodologies on faces 

** Only outer shell surfaces are emulated 

Table 1. Comparison between ESARAD and TSS capabilities 

Writer methods are provided to export the Surface, Optical Property, and Thermophysical Property collections to the 

specified files for the supported thermal analysis codes (currently TSS and ESARAD). In essence, the framework 

uses a variant of the TSS formats as a neutral format for the import, storage, manipulation, and export of a thermal 

GMM. There are currently two major features of codes that are not supported by the converter: use of finite element 

and edge node numbering and Boolean/cutting operations. ESARAD currently does not support the user defined 

node numbering of element node numbers to allow for conversion, even though Finite Element support is provided 
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(ESARAD automatically merges and renumbers the nodes prior to writing the ESATAN file). Therefore, 

preservation of the Finite Element node numbering from TSS cannot be preserved upon export to ESARAD. This is 

critical for conversion in order to maintain the link between GMM node assignments and TMM nodal conductor 

links. Efforts are currently underway to emulate the surface sub-areas associated with a finite element node but 

using centroid based surfaces. The second major feature not supported during conversion is the use of cutting 

operations, which may be used in ESARAD. The conversion process preserves the base surfaces needed for the 

cutting operation and generates them as excluded from radiation calculations in order for the user to be able to re-

create representations of the surface in the destination tool. 
 

 
Figure 1. Graphical User Interface for GMM Conversion 

 
The framework provides a GUI for an end user for the GMM conversion as shown in Figure 1. The framework can 

also be used by developers to import existing models, further manipulate or evaluate the surfaces, and provide 

additional capabilities if desired. The source code is written in VB.NET and takes advantage of Microsoft’s® .NET 

Framework 3.5. Therefore, it can be incorporated into any other .NET languages, such as C#, C++, etc for further 

inheritance or use. The work presented here is currently in the process of being evaluated for release for beta testing, 

with anticipation of releasing it to industry for general use. 
 
III. Geometrical Math Model: Conversion Examples 
 
Verification of successful conversion was done visually in the source and destination software. Figure 2 shows an 

original collection of emulatable surface types (Brick, Trapezoid, Box, Solid Cylinder, Solid Sphere, Tetrahedron, 

Wedge, NonOrthoBrick, Ellipse, and Torus) as well as various incarnations of these entities. Figure 3 shows the 

converted/emulated shell representation of these entities. The colors correspond to varying optical properties 

showing the correct application of optical property to the appropriate sides. In some cases, the entities were further 

subdivided into their respective nodal subdivisions; this is shown by the sub-entities highlighted in yellow to 

demonstrate their independence from neighboring entities. Upon successful conversion of simple entities, two full 

observatory models were next utilized for testing: the Lunar Reconnaissance Orbiter (LRO) in TSS and Solar 

Orbiter in ESARAD. The LRO model was modified to remove the ellipsoid representing the tank and the surfaces 

with a Finite Element nodalization scheme. Figure 4 shows the original model in TSS on the left and the converted 

model in ESARAD on the right. Visually, the two models appear nearly identical. A more formal verification will 

eventually be performed by comparing radiation couplings generated by the two codes and ensure that couplings are 

within the expected errors associated with the Monte Carlo Ray Trace utilized by both codes. 
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Figure 2. Base set of emulatable entities in native format 

 
Figure 3. Resultant Emulation Entities after nodal subdivision 

 
Figure 4. Lunar Reconnaissance Orbiter in TSS (left) and converted to ESARAD (right) 
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Similarly, the Solar Orbiter model was converted from its native ESARAD to TSS. The two models are shown in 

Figure 5. It should be noted that the Solar Orbiter model includes numerous cutting operations for penetrations 

through the Sun Shield, which are not converted. The various blue and yellow surfaces in the left image of Figure 3 

represent the base surfaces used in the cutting operations by ESARAD to generate the final geometry seen in the 

image on the left side of Figure 5. 
 

    
Figure 5. Solar Orbiter in ESARAD (Left) and converted to TSS (Right), cutting operations not converted 

 

 

IV. Thermal Math Model: Framework 

 
 
The TMM Converter framework supports conversion between SINDA/FLUINT and ESATAN, the respective 

TMMs of the TSS/Thermal Desktop and the ESATAN-TMS suites. From user-specified input and output file names, 

dedicated reader methods are used to populate collections of nodes, arrays, registers, conductors, and comments. 

From these collections, dedicated writer methods are then used to output into the desired format. While the 

processing of the data blocks (e.g. Nodes, Conductors, Arrays, etc) is fairly straightforward, the conversion of the 

logic block is far more challenging due to the unstructured nature of the FORTRAN/MORTRAN language utilized 

by both codes.  Since ESATAN and SINDA each provide their own libraries of function in addition to the intrinsic 

functions of FORTRAN, a collection of wrapper functions may also be output when converting to replicate the 

functionality of the origination code in the destination code.  These wrapper functions are stored in user modifiable 

text files such that the source code itself does not need modification to introduce new mappings between function in 

the codes.  However, conversion of the syntax for referencing nodal and conductor properties in logic blocks is 

provided by the framework.  

 

The ultimate goal of the converter is to create an executable code in the converted format, but due to the wide range 

of syntax supported by both the SINDA and ESATAN formats, there may be certain sections of code that cannot be 

converted. Therefore, the converter only attempts to convert a majority of the TMM statements encountered in 

SINDA and ESATAN codes used by major flight projects, but not every single feature, contingency, or special case. 

User input will still be required post-conversion, as the code must be checked to ensure an accurate, comparable 

solution is obtained in the converted format. The following sections will discuss the architectural similarities and 

differences between the two formats, as well as special considerations taken for the specific SINDA-to-ESATAN 

and ESATAN-to-SINDA conversions. 

 

Comparison between ESATAN and SINDA Formats 

 

As ESATAN was originally developed based on a SINDA-like framework, it shares many similarities with SINDA. 

Both programs have data blocks to input variables, nodes, conductors, and arrays in multiple submodels. 

VARIABLES blocks define time- and temperature-dependent logic to be processed prior to solver execution, as well 

as allow for the post-processing of logic afterward. In SINDA and ESATAN, HEADER OPERATIONS and 

$EXECUTION blocks respectively handle the definition of the thermal case and solution parameters, Both programs 

also allow for user-defined logic in FORTRAN or MORTRAN which have the additional capability of referencing 

properties defined in the data blocks. These similarities and differences are shown inTable 1. Comparison between 

ESARAD and TSS capabilities  
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BLOCK Description ESATAN SINDA 

NODE  Diffusion Node Y Y 

Arithmetic Node N (Diffusion with C=0) Y 

Boundary Node Y Y 

Inactive Node Y N 

Heater Node N (Same as Boundary) Y 

Nested Submodel Hierarchy Y N 

Global Submodel References N Y 

Node Variables Created T,QS,QA,QE,QI,QR,A,EPS, 
ALP,L,C 

T,Q,C 

Simultaneous creation of multiple 
nodes 

DO Loop Supported: GEN, SIM, 
DIM statements 

Nodes with temp-dependent 
capacitances 

INTERP function call in C 
value 

Supported: SIV, DIV 
statements 

SOURCE  Heat Source Reference N/A Node Number 

COND-
UCTOR  

Linear Conductor Y Y 

Radiative Conductor Y Y 

Conductor Reference Node Pair Number 

Simultaneous creation of multiple 
conductors 

DO Loop Supported: GEN, SIM, 
DIM statements 

Conductors with temp-dependent 
conductances 

INTERP function call in 
conductor value definition 

Supported: SIV, DIV 
statements 

Trans-submodel connections Only at higher submodel Global 

ARRAY  Singlet and Doublet Arrays Y Y 

Bivariate and Trivariate Arrays Supported in $TABLES Y 

Array Reference String Number 

CARRAY  Character Array Support N Y 

VARIABLES  Global Variables N Y 

Submodel Specific Variables Y Y 

Submodel Specific Variable Reference String Number (K,XK) 

Submodel Specific Variables Globally 
Accessible 

N Y 

LOGIC  Model FORTRAN Entry Point Y Y 

Include Additional Files $INCLUDE INCLUDE, INSERT 

Initialize Values Y N 

Node and Conductor Variable scope Only at higher submodel Global 

Q values reset to SOURCE DATA or zero 
at start of Timestep 

N Y 

Instructions for start of Timestep 
(VARIABLES 0) 

N Y 

Instructions for start of Iterations 
(VARIABLES 1) 

Y Y 

Instructions for Post Convergence 
(VARIABLES 2) 

Y Y 

Instructions at regular Ouptut Intervals Y Y 

User Subroutines Y Y 
Table 2. Comparison between ESATAN and SINDA capabilities 
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As seen in Table 2. Comparison between ESATAN and SINDA capabilities SINDA and ESATAN have many 

inherent architectural differences. One of the most prominent differences between the two formats is that the 

ESATAN model structure allows for a hierarchy of submodels where one submodel may be nested in another as a 

child submodel. In this construct, each submodel may be separately analyzed as a standalone model, and the nodes, 

conductors, and variables defined in a child submodel can only be accessed by the parent submodel. However, the 

child submodel can only access local information, not any definitions in its parent or sibling submodels. SINDA, in 

contrast, places all of its submodels on the same global level and any submodel may reference entities in another.  

 

In the Node and Conductor data block definitions, the most common format includes only the basic node and 

conductor information for single creation of simple values.  SINDA includes a number as the unique identifier for a 

conductor whereas ESATAN utilizes the node pair as the unique identifier.  For the case of multiple conductors in 

ESATAN between the same node pair, an additional index is implicitly included in the definition. SINDA features 

special constructs for the generation of multiple or varying values: SIV and DIV statements allow for array-based 

nodal capacitance or temperature-varying conductance, and GEN and SIM statements create multiple instances of 

simple value inputs and SIV statements. ESATAN does not allow for generation of a group of nodes or conductors 

in one statement, but it may be accomplished with a DO loop structure. Furthermore, ESATAN allows the use of 

library functions in the capacitance and conductance definitions; SINDA only allows intrinsic FORTRAN 

statements (e.g. EXP, SIN, etc.).  Therefore, SIV conductors or nodes in SINDA could be emulated with calls to the 

INTERP function in the ESATAN library. 

 

SINDA assigns numbers to identify arrays and allows for the use of singlet, doublet, bivariate, and trivariate inputs, 

whereas ESATAN defines its array names with strings and populates its arrays with the type of variable as defined 

under the current block declaration (e.g. $INTEGER or $REAL). ESATAN allows the definition of singlet and 

doublet arrays within its $ARRAYS block and provides explicit array or matrix size definitions after the array name. 

For bivariate or trivariate arrays, ESATAN defines these in a separate $TABLES block. MIXARRAY formats, 

where both integers and floats are defined as array entities, as well as character arrays are not convertible from 

SINDA due to their lack of support in ESATAN.  

 

SINDA execution begins in the HEADER OPERATIONS block, whereas ESATAN execution begins in the 

$EXECUTION block. ESATAN has an added feature of an $INITIAL block, which allows initialization of data 

prior to execution, effectively acting as the first “subroutine”, as the program executes the $INITIAL block code 

only once. Logic in the $INITIAL block of ESATAN is replicated at the beginning of OPERATIONS in SINDA.  In 

SINDA, Variables 0 handles the time-dependent logic and Variables 1 the temperature dependent logic prior to 

solution of the heat transfer equations; Variables 2 handles the post-processing. In ESATAN, only the Variables 1 

and 2 blocks exist as an equivalent analogy to SINDA, with both time and temperature dependent logic being in the 

$VARIABLES 1 block. Figure 6 and Figure 7 graphically show the comparison of SINDA and ESATAN operations 

flow for Steady-State and Transient cases, respectively.  
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Figure 6. SINDA and ESATAN Operations Flow for Steady-State Cases 

 

 
Figure 7. SINDA and ESATAN Operations Flow for Transient Cases 

 

Conversion from ESATAN to SINDA 

 

Due to the intrinsic differences between two formats, certain features must be removed or emulated from each 

format to allow them to be converted. For conversion to SINDA, the ESATAN submodel hierarchy must be 

removed so that all of the submodels are on the same level. However, this prevents duplicate submodel names or 

duplicate variable names under different submodels from being used. Where possible, the current work attempts to 

convert equivalent constructs in both formats. 
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In the nodes and conductors block, ESATAN allows for an array-based variation of capacitance or conductance in 

its node and conductor definitions, respectively, via an INTERP function call. When converted to SINDA, these 

array-dependent nodes and conductors are assigned an initial, fixed value in the data blocks and then updated with 

array interpolations in the VARIABLES 1 block. SINDA and ESATAN have directly translatable equivalents for 

node type in diffusion and boundary nodes; however, in ESATAN, arithmetic nodes are created as a diffusion node 

with capacitance equal to 0. When converted to SINDA, they are created as diffusion nodes with a fixed value; the 

ARITNOD subroutine is then called in VARIABLES 1 to re-cast it as an arithmetic node for the solution. This 

precaution is used such that if the node was defined initially in ESATAN with no capacitance, and a capacitance was 

later specified in logic, the SINDA compiler does not fail on a node with a capacitance of 0.  

 

ESATAN has an additional feature of an “inactive” node. Inactive nodes are ignored during the solution routine, but 

their properties may be referenced at any other point within the code. For conversion to SINDA, inactive nodes are 

re-cast as heater nodes using the HTRNOD subroutine in SINDA, and all subsequent references to the node in the 

CONDUCTORS block are commented. Thus, the properties for the node are able to be referenced in SINDA 

without the node having any impact on the resultant solution. ESATAN also allows for “optional” properties to be 

defined in the nodal input statement, such as heat from environmental and internal sources, area, absorptivity, 

emissivity, and location in Cartesian coordinates. Since SINDA does not accommodate these, all untranslatable 

properties are placed into the inline comment as reference, with the exception of heats, which are added later in the 

VARIABLES 1 block. For references to any nodal properties in ESATAN for which there are no SINDA variable 

equivalent, such as areas (which are often referenced in the radiative conductance terms for MLI couplings in 

ESATAN) these variable references are replaced in SINDA with their associated values. 

 

In ESATAN, conductors may only reference nodes in that submodel or its children.  Conductors cannot reference 

nodes in sibling or parent submodels. This is very different from SINDA, where all nodes can be referenced in any 

conductor block with the proper submodel prefix. Hence, to avoid the unnecessary task of tracking submodel 

hierarchy to reference conductors, the converter automatically places all conductors in a global submodel and 

removes the submodel hierarchy in ESATAN, thus making it consistent with SINDA in which all submodels are at 

the same level. The converter also explicitly places the submodel name before the node number for all conductor 

generation statements, removing any ambiguity as to which submodel the node number references. Conductor 

numbers are used by SINDA to refer to the pair of nodes for which the coupling is generated in the conductor 

statement.  ESATAN just directly references the node numbers themselves. For example, in SINDA, a conductor 

definition may be written as: 

 

      5, MAIN.2, BATTERY.3, 15.0 

 

Where the first entry is the conductor number, the second and third are the nodes for which the conductors are being 

generated, and the last is the conductance value. The same statement in ESATAN may be written as below, but only 

from the parent submodel of both MAIN and BATTERY: 

 

      GL (MAIN:2, BATTERY:3) = 15.0; 

 

If there is a reference in logic for a particular conductor, SINDA references the conductor number directly (e.g. G5) 

whereas ESATAN references the entire node pair (e.g. GL(MAIN:2, BATTERY:3)). After conversion, all ESATAN 

conductors are assigned sequential conductor numbers, keeping the linear conductors and radiative conductors in 

separate ranges. References to conductors in logic are translated to the appropriate conductor number reference. 

 

Arrays were similarly handled as conductors with ESATAN array names being assigned sequential array numbers, 

with the pre-defined array name in ESATAN placed in the SINDA inline comment. A special provision is made for 

the ESATAN “shorthand” array input, in which the “@” symbol could denote many subsequent instances of the 

same value. For example, “5@1.0” denotes that the array should be populated by the value “1.0” five times. This is 

fully expanded in the array input before storing into the array collection. References in logic to the array name are 

replaced with the SINDA array number reference. 

 

The unstructured nature of the logic statements complicates conversion of ESATAN to SINDA logic. Wherever 

possible, wrapper functions were provided in a separate subroutine library to replicate ESATAN subroutines with 

SINDA subroutines. For example, if an array interpolation routine such as INTRP1 in ESATAN is used, after 
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conversion the original function call is preserved to call INTRP1 in SINDA. Since no such subroutine exists in 

SINDA, in the subroutine library a separate wrapper function is written with the name INTRP1 that calls upon 

intrinsic SINDA functions (such as D1DEG1) to complete the array interpolation. With this method, though, user 

routines supported via wrappers may not convert correctly.  References to ESATAN node variables (e.g. T, QI, etc) 

are replaced with their SINDA equivalents.  

 

Conversion from SINDA to ESATAN 

 

The reverse conversion from SINDA to ESATAN provided a set of challenges separate from the ESATAN to 

SINDA conversion. The hierarchical structure of ESATAN submodels does not exist within SINDA, and therefore 

all conductors, arrays, variables, and logic are moved to the top level in the converted ESATAN format to allow 

global access. This includes SINDA logic previously written for a specific submodel.  In this manner, only node data 

and numbered user data is defined within a submodel and all conductors and logic are placed into the top level 

parent submodel. 

 

In the data blocks, since ESATAN does not support generation of multiple nodes or conductors in one statement, all 

GEN and SIM statements in SINDA are expanded before storing in memory. For nodes and conductors based on 

expressions or SIV/DIV statements, these are assigned a fixed value in the data blocks and then later computed in 

the VARIABLES blocks. Also, due to the difference in how ESATAN references conductors and arrays, all SINDA 

conductor numbers were removed and stored in the inline comment. Since ESATAN defines its array names with 

strings, a prefix of “ARRAY” was placed before SINDA array numbers such that they would be clearly defined in 

the ESATAN code.  

 

Recognition of bivariate and trivariate arrays were difficult in SINDA and therefore the converter only takes a 

rudimentary effort at identifying the type of array based on the number format (integer or float) and sequence of 

each array. Also, definition of array lengths in SINDA is difficult since SINDA does not explicitly specify the ends 

of arrays, and therefore other reference markers (such as the beginnings of other arrays or end-of-file statements) are 

used to extract array length. Although ESATAN is more explicit in its definition of bivariates and trivariates with its 

$TABLES block and array headers, conversion of arrays beyond singlets and doublets still proves a challenging 

task.  

 

To reference properties of nodes in ESATAN logic, the SINDA syntax for this reference is converted to ESATAN 

syntax (e.g. from “SUBMODEL.T56” in SINDA to SUBMODEL:T56 in ESATAN).  Since ESATAN does not use 

conductor numbers, the corresponding node pair must be found for the assigned conductor number in SINDA and 

then referenced in the logic whenever there is a call of a conductor property.  Furthermore, any K or XK variables 

created in a particular submodel’s user data block in SINDA must be converted to the equivalent ESATAN 

submodels under the appropriate $INTEGER and $REAL blocks. It should be noted that SINDA uses the 

EQUIVALENCE capability of FORTRAN to allow two variables to be stored at the same address in memory.  

Therefore, referencing XK would process the bits as a REAL, while K would process the same bits as an integer.  

This equivalencing is not preserved on conversion and separate variables (K and XK) are created for each number. 

 

In logic, SINDA has certain HEADER blocks that are not immediately convertible to ESATAN. For the HEADER 

SOURCE DATA block, the information in SOURCE DATA is transferred to the $VARIABLES1 block in 

ESATAN where it is added as impressed heat (QI) to its destination node. VARIABLES 0 logic is also transferred 

to the $VARIABLES1 block since VARIABLES 0 has no equivalent in ESATAN. In the model execution block, 

keywords that are used to call a solution routine are replaced if they have an equivalent routine in the format they are 

being converted to. Control constants and intrinsic conversion constants are also replaced if they have an equivalent 

constant name in the output format. For other variables, if they exist in the registers block, they are directly 

converted to the output format without modification.  

 

In SINDA, nodal Q variables are reset to zero at the start of VARIABLES 0.  However, in ESATAN, the previous 

value from the last timestep or iteration persists upon entering VARIABLES 1.  Therefore if a SINDA model 

included all additive instructions (Q1 = Q1 + 1.0) counting on the reset, ESATAN would cumulatively increase the 

value while it would be constant for SINDA.  Therefore, all nodal Q variables are reset to zero using the SETNDR 

function in ESATAN. For all other intrinsic functions and subroutines, wrapper functions are used for conversion 

between formats, synonymous with those mentioned previously for the ESATAN-to-SINDA conversion.  



 

Thermal and Fluids Analysis Workshop  
 

 

11 

 

V. Conclusions and Future Work 

 

A TSS/SINDA to ESARAD/ESATAN conversion tool was developed by the Thermal Branch of NASA Goddard 

Space Flight Center. The GMM converter provides a method for converting radiation surfaces between TSS and 

ESARAD. Additional functionalities are provided for the emulation of surface types that do not exist in both codes 

as well as the representation of subdivided surfaces by assemblies of surfaces. Previous thermal model examples 

were used to test the conversion capabilities of the ESARAD converter. In addition, a TMM converter was 

developed to convert between SINDA and ESATAN. Data block conversions were largely supported due to their 

structured nature, but only general functions and references were supported for the logic blocks. Special 

considerations were made specific to the ESATAN-to-SINDA and SINDA-to-ESATAN conversions due to the 

intrinsic differences of each code.  

 

Due to the extensive variations in syntax as well as intrinsic functions supported by both formats, there remain many 

opportunities for future expansion of the converter. As examples, the code could be adapted to support the SPV and 

DPV node and conductor declaration formats in SINDA, which allow for polynomial-based variations in nodal 

capacitance and conductance. A more robust bivariate and trivariate array detector could be included, or a more 

robust subroutine library which contains a greater number of wrapper functions for conversion between ESATAN 

and SINDA. Since the subroutine library is also provided as a text file, the user is able to add additional wrapper 

functions applicable to specific model conversions. Through the current work, it is hoped that the converter provides 

a robust basis for TSS/SINDA and ESARAD/ESATAN conversion with an easily expandable architecture for future 

additions that facilitate inter-agency collaborations.  


